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Chapter-4
Discrete Wavelet Transform 

(4.1) Introduction:
This chapter introduces a type of wavelet 

representation that has assumed considerable practical 
significance because of its link to digital filtering. Our 
aim is to develop the ideas entirely through an example 
involving the Haar wavelet.
Definition:

If f(t) is any square integral function then 
continuous time wavelet transform of f(t) with respect to a 

wavelet <p(t) is defined as

cO

W(a,b) - J f(t) (1/VI a! )<p*[(t-b) /a] dt 
~<0

Continuous Wavelet Transform maps a one-dimensional 
function f(t) to a function W(a,b) of two continuous real 
variable a and b which are wavelet dilation and translation 
respectively. The region of support of W(a,b) is defined as 

the set of ordered pairs (a,b) for which W(a,b) * 0.
Let us introduce one type of non-redundant wavelet 

representation of form

«o= £, ..... (4.u)
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where k is integer and at any dilation 2k translates 
takes the values 2kl, where 1 is again integer. The two 
dimensional sequence d(k,I) is commonly referred as the 
discrete wavelet transform of f(t). The representation in 
(4.1.1) is useful in Multiresolution Analysis (MRA) in 
constructing the approximations to functions in various 
subspaces of a linear vector space.
(4.2) Approximating vectors In nested Subspaces of a 

Finite Dimensional Linear Vector Space:- 
Definition( Inner product )

Given two finite energy signals x(t) and y(t), their 
inner product, denoted by < x(t), y(t) > and is given by

CO
< x (t), y (t) > - J x (t) 3T(t) dt

-cO

Consider the set of all N-diraensional, real-valued 
vectors of the form X = [xi, X2, X3, x#]. This set forms an 
N-diraensional linear vector space and there exists N
linearly independent basis vectors ai, a2, 83.... a* Such
that

X * «iai + oc2a2 + • • • + where eci, oc2, • • • # are
the scalars. Now, we are interested in approximating 
vectors in VN by vectors in VN-i. The best possible 
approximation in the minimum mean squared error or least
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squares sense is made by choosing the vector say Xn-i in VN_i 

for which the length of the error vector i.e

ej|-i - X - Xn-i is minimized. This vector is obtained by 

solving for e»_i in

< en-1, ak > = 0 ------- (4.2.2)

where k - 1, 2, 3, . . N-l.

The vector Xn-i is called the orthogonal projection of X 

on Vn-i. The error vector eu-i is orthogonal to every vector 

in Vji-j .

Suppose we now continue this process of projecting 

throughout the entire sequence of subspaces by projecting 

Xn-i on VN-2 to yield Xw-2 and so on. At the end of the process 

we have a sequence of orthogonal projections of X in the 

subspaces VN.i, VN_2, . . ., Vi. These are %*-i, Xn-2# • . .» Xi 

respectively. Thus approximating vector Xk+i as well as the 

projection of the vectors %)e+2» . . ., x on vk*

With X„ = X, let

©k™ Xk+1— Xk k ® 1, 2, . . ., N-l. 

denote the error between the projections on successive 

subspaces. The subspace Vn-i contains the finest

approximation to vectors in V# whereas Vj contains the 

coarsest approximation. Since X - en-i - )&i-i , the error

vector eji-i can be considered as the amount of "detail” that
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is lost in X in going to its approximation %n-i* These detail 
vectors belongs to the WN-i, the orthogonal subspace of V». 
Thus vector in VN can be expressed as the sum of a vectors 
Vij-i and a vector in WM-i. Also the original vector is 

reconstructed from the coarsest approximation %i and details 
at various levels, that is,

X - en-i + en_2 + • • • + ®i + Xi ------ (4.2.3)
This shows that every vector in Vjj can be expressed as 

in (4.2.3), that is, ew-i, e»-2r. . *r®i belongs to Wji_i,

W* -2/ • • . / Wj respectively and %i € V*. Since all these 
subspaces are mutually orthogonal we can write

V„ = WN_i© Wm-2 ® . . . © Wj © Vj ------(4.2.4)

(4.3) Approximating Vectors in Nested. Subspaces of an 
Infinite Dimensional Linear Vector Space

Consider the familiar Fourier Series expansion of 
periodic signals. A real periodic signal of fundamental 
periodic T second with finite energy over a period can be 
expressed as a linear combination of sines and cosines of 
frequencies that are integer multiples of the fundamental 
frequency 1/T Hz. The set of all periodic signals of period 
T with finite energy over a period forms a linear vector 
space. Let V„ denotes the subspace generated by the DC term,
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the fundamental and all harmonics upto the ntb harmonic. The 

(2n+l) vectors namely

cos(27ikt/T) , k ■ 0, 1, . . .f n and

sin(2xkt/T) , k - 1, 2, . . ., n 

Let the above linear vector space be V* whose bases vectors 

are mutually orthogonal under

< x(tX y(t) > ^ x(t) y(t) dt ........... (4.3.1)

Here also we have a nested sequence of subspaces and every 

periodic signal in V« is the sum of the coarsest 

approximation (DC component) and the detail function 

(various harmonics).

Kxanjxle of an Mnl tirasolution Analysis (NRA)
Consider the approximation in nested linear vector 

subspaces involving a wavelet and is an MRA. Let f (t) be a 

continuous, real-valued, finite energy signal. We will use 

piecewise constant functions to build approximations to 

this function at different levels of resolution. Let us

begin with an approximation {£, £+1), for integer t. let us 

call this approximation fo(t). The approximation is best if 

(|f (t) —f© (t) ||2 is minimized, that is, the best constant to 

approximate a function over an interval is average value of
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f(r)dr l<.t<>l+1 .....(4.3.2)

the function over that interval.

Let Vo be the vector space formed by the set of functions 

that are piecewise constant over unit intervals. Thus 

function f(t)e L2(R) is approximated by function fo(t) in Vo.

Now if we consider approximating f(t) in the vector 

space of functions that are piecewise constant over

fi(t)=!£+2 H*)dr 2?<:/:S2/+2 .... (4.3.3)

intervals of length 2, that is, intervals of the form 

21 <, t £ 24+2 for integer t. Let us call this space Vi, 

proceeding as above and if fi(t) is that approximation then 

for integer value of t.

Compared to fo(t), the functions fi(t) is a coarser 

approximation to f(t) and f-i(t) is finer approximation than 

f0(t) in the space V_i of functions that are piecewise 

constant over half unit interval

f'(,)= jiff* mdT ... <4-3-4>

for integer value of 4.
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Proceeding in this way let Vk, for a given integer k be 

the space of functions, that is, piecewise constant over 

intervals of length 2k. Then the least squares approximation 

to f(t) is given by

1 ,2«/+1>
f*c>= <WdI 2k (/+1) (4.3.5)

for integer value of t.

For two integers i and j, i < j, the approximation 

fi(t) is finer than fj(t). This would suggest that the 

limiting approximation

f*(t) = 0 for all t —---- (4.3.6)

Thus f»(t) is the zero vector. We define the detail function 

at level k as

9k(t) - fk-i(t) - fk(t) ------ (4.3.7)

From the equation (4.3.6) and repeated application of 

equation (4.3.7) to successive values of k, we have

- £ gj(t) ...................(4.3.*)
j» -*0

Taking the limit k qo yields

») - £*,(»)
k * *40

(4.3.9)



92

(4.4) Bases for the Approximation Subspaces and Haar 

Scaling Function

The common vector in all the approximation subspaces 
is the zero vector. It is given by

|W« - - - - -
k«-»

Another property is that if a function f(t) e V* then 

f (2t) e Vk-i and viceversa. The bases for all the subspaces 
in this structure can be generated using translation of an 
appropriately dilation of a single function called the 
scaling function.

The basis for V* for any integer k is obtained by 
translations of an appropriately dilated version of the 
single function given by

fl
<K0=

o^t <1
.0 otherwise

(4.4.2)

This function, which is a rectangular pulse, is known as 
the Haar scaling function.
Let

(*+1) f(t)dt (4.4.3)
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For some integer k, using equation (4.3.5), C(k,/) is simply

the average value of f(t) in the interval 2H <, t < 2k(£+l) . 

Based on the fact that,

*2-*0=
fl

10
0 < t < 2k 

otherwise
-(4.4.4)

We have,

/,(0=2C(k,^^(2kf-/) ......(4.4.5)

Which indicates that any function in V* can be obtained as a 

linear combination of a dilation of $(t) by a factor of 2k 

and its translations by integer multiples of 2k. Since the 

set { <)> (2-kt - t) : k,£ integer } is orthogonal it is a basis 

for Vjj.

(4.5) Bases for the Detail Subspace and Baar Wavelet
The basis functions for the subspaces in which the 

detail functions git(t) reside can be obtained using 

translations and dilations of a single function, which in 

this case is a wavelet. To generate the basis functions for 

the details first take,

go(t) - f-i(t) - fo(t) ------- (4.5.1)
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Since the subspaces are all nested, the basis at one level 

should be expressible in terms of the basis at the next 

finer level.

Therefore, «|>(t) - *(2t) + ♦(2t-l) ------- (4.5.2)

For 0 £ t < 1, using (4.5.1)
f-i(t) * C(-l,0)$(2t) + C(-l,l)«j>(2t-l) ------(4.5.3)

and

f0(t) « C(0,0)4>(t) ------(4.5.4)
We have

C(0,/) - h [ C(-l,21) + C(-1, 2/+1) ] ------(4.5.5)
In-particular,

C( 0,0) - H [ C (-1,0) + C (-1, 1) ] ------- (4.5.6)

Using (4.5.1) to (4.5.4), we get,

go(t) - d(0,0)9(t) ------(4.5.7)
Where, p(t) - <|>(2t) - «|>(2t-l) ------- (4.5.8)
And d{0,0) - [ C(-1,0) - C(-l,l) 3 -------(4.5.9)

The function <p(t) is the Haar wavelet. It is given by

fl 0 £ t < 1/2<P(t)H-l 1/2 ^ t < 1 -.... (4.5.10)
lo otherwise

As is required <p(t) integrates to zero, with

d(0,Z) = h [ C(-1,2t) - C(-1,2/+1) ] ------(4.5.11)

In-general,

g.(«)=2a(lt,/)<P(2“«-<) .....(4.5.12)
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Where,

d(k, t) - Vfe[C(k-l,2*)-C(k-l,2/+l)] ------(4.5.13)

from equations (4.4.3), (4.5.8), (4.5.10) and (4.5.13) we

have,

d(M)= ............(4-514)

Also,

«p (2~kt - /), <p(2"kt - m)> - 0 ------(4.5.15)

For t * ra, equation (4.5.12) and equation (4.5.15) imply

that for a specified integer k the set { <p(2-kt - £) : t is 

integer }, provides a basis for the space containing the 

detail function gic(t). Let us call this subspace Wk. 

Symbolically, Vk-! » Vk © Wk ------(4.5.16)

The subspace Wk of details of the form gk(t) is 

orthogonal to Vk and Vk+i and so on, we have,

.....(4.5.17)

Finally, using equation (4.3.9) and (4.5.15), we have,

«t)=2 ZiXke) <Kikt-e) (4.5.18)
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Thus, equation (4.5.18) express the function f(t) in terms 

of discrete wavelet representation. The orthogonality of 

the set of dyadically dilated and translated wavelet 

further makes this by definition an orthogonal wavelet 

decomposition or orthogonal MRA.

Example: Consider the function 

F(t) - e{'t/4)u (t)

Where u(t) is the step function, 

u(t) - r 1 if t S 0

0 otherwise

To coapute the approximations to the function f (t):

The average value of the given function in the 
interval a <, t £ b for any a £ 0 and b > a is given by

and the coefficients c(k,<) are given by

= fk(t) , 2kezt$2k{£+l)
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This is the approximation to f(t) at resolution level k.

Let us consider the different values of k as k - -2, -1, 0, 

1, 2. The corresponding coefficients are given by

1) if k - 2

f2(t) = e'*(l - 1/e) - c (2,1) , 41 £ t £ 4 (*+l)

2) if k - 1

fi(t) = 2e”</2 (1 - e'1/2) « c(l,/) , 2/ S t ^ 2(f+l)

3) if k - 0

fo(t) - 4e"*/4 (1 - e'1/4) - c(Q,t) , t £ t £ (/+1)

4) if k - -1

f-i(t) - 8e"</8 (1 - e-1/*) - , 1/2 £ t £ (/+1)/2

5) if k - -2

f_2(t) - 16e_//16(l - e"1/16)= c(-2,t), t/4 £ t £ </+l)/4

Now the coefficients for the different values of t are given 
as

0 1 2 3
-2 C (-2,0) C(-2,1) C (-2,2) C(-2,3)
-1 C(-1,0) €(-1,1) C (-1,2) C(-1,3)
0 C(0,0) C(0,1) C(0,2) C (0, 3)
1 C{1,0) C(l,l) C(1,2) C (1, 3)
2 C (2/ 0) C (2,1) C(2,2) C(2,3)
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and using the relation (4.5.12) gk(t) = £ d{k#£)<p(2"kt-/)
ia-CO

where, the coefficients
d(k,t) - (l/2)[c(k-l,2*) - C(k-1,2/+1)] 

and <p(t) the wavelet as in equation (4.5.10)

f 1 O^t <1/2 
<f(t)=(-l 1/25 t<l 

[O otherwise

the corresponding details are computed. Finally using the 

relations (4.5.18)

««)=£ ZdM (P(2*t-/)
Sjia—SO ©

f't) can be computed. The approximations over the range 

0 £ t £ 16 for values k =* -2, -1, 0, 1, 2 are as shown in

figure.




